INTEGRAL_C (x − y) ds, where C is the portion of y = x^3 from (1, 1) to (−1, −1)
-
The integral is along C, so x - y = x - x³
ds = √(1 + (dy/dx)²) = √(1 + 9x^4)
The line integral becomes
-1
∫ (x - x³)√(1 + 9x^4) dx
1
Break this up into two integrals
-1
∫ x √(1 + 9x^4) dx -
1
-1
∫ x³ √(1 + 9x^4) dx
1
For the first integral, use the substitution u = 3x²; for the second integral, use u = 1 + 9x^4
ds = √(1 + (dy/dx)²) = √(1 + 9x^4)
The line integral becomes
-1
∫ (x - x³)√(1 + 9x^4) dx
1
Break this up into two integrals
-1
∫ x √(1 + 9x^4) dx -
1
-1
∫ x³ √(1 + 9x^4) dx
1
For the first integral, use the substitution u = 3x²; for the second integral, use u = 1 + 9x^4