Please leave in radical form.
Help is greatly appreciated.
Help is greatly appreciated.
-
√(14)+√(2/7)
Rationalize the denominators:
= [√(14√7)/√7]*(√(7)/√(7) + √(2/7)*(√(7)/√(7)
= [√(14√7√7]/(√7/√7) + √(2√7)*(√7/√7)
= √[(14)*7]/(7) + (√2√7)/(7)
= √[(14)*7]/(7) + (√14)/(7)
[√14(7 + 1)]/7
= (8√14)/7
Rationalize the denominators:
= [√(14√7)/√7]*(√(7)/√(7) + √(2/7)*(√(7)/√(7)
= [√(14√7√7]/(√7/√7) + √(2√7)*(√7/√7)
= √[(14)*7]/(7) + (√2√7)/(7)
= √[(14)*7]/(7) + (√14)/(7)
[√14(7 + 1)]/7
= (8√14)/7
-
√98/7 + √2/7 =(√49 √2 )/ √7 + √2/√7 = 7 √2/√7 + √2 / √7 = (8 √14)/7