∵ x = cos 3t, y = sin² 3t
∴ x² + y = cos² 3t + sin² 3t = 1
∴ y = 1 - x² ........................................… (1)
∴ dy/dx = -2x ..................................... (2)
∴ d²y/dx² = -2 .................................... (3)
_________________________
Happy To Help !
_________________________
∴ x² + y = cos² 3t + sin² 3t = 1
∴ y = 1 - x² ........................................… (1)
∴ dy/dx = -2x ..................................... (2)
∴ d²y/dx² = -2 .................................... (3)
_________________________
Happy To Help !
_________________________
-
Note that, with x = cos(3t) and y = sin^2(3t), we see that:
dx/dt = -3sin(3t) and dy/dt = 6sin(3t)cos(3t).
This gives:
dy/dx = (dy/dt)/(dx/dt)
= [6sin(3t)cos(3t)]/[-3sin(3t)]
= -2cos(3t).
Then, since d^2y/dx^2 = [(d/dt)(dy/dx)]/(dx/dt), we see that:
d^2y/dx^2 = [(d/dt)(dy/dx)]/(dx/dt)
= {(d/dt)[-2cos(3t)]}/[-3sin(3t)]
= [6sin(3t)]/[-3sin(3t)]
= -2.
I hope this helps!
dx/dt = -3sin(3t) and dy/dt = 6sin(3t)cos(3t).
This gives:
dy/dx = (dy/dt)/(dx/dt)
= [6sin(3t)cos(3t)]/[-3sin(3t)]
= -2cos(3t).
Then, since d^2y/dx^2 = [(d/dt)(dy/dx)]/(dx/dt), we see that:
d^2y/dx^2 = [(d/dt)(dy/dx)]/(dx/dt)
= {(d/dt)[-2cos(3t)]}/[-3sin(3t)]
= [6sin(3t)]/[-3sin(3t)]
= -2.
I hope this helps!
-
dy/dx= -2cos(3t)
d^2y/dx^2= -2
Please like this if the answer is correct! I edited it!
d^2y/dx^2= -2
Please like this if the answer is correct! I edited it!
-
hi