in problems 1 to 3, find the remaining angle(s) and side(s) of each traingle if it (they) exists.
1.α = 10°, γ = 40°, side c = 2
2. a=10, side b= 7, side c =8
3. side a =1, side b =2, γ =60°
1.α = 10°, γ = 40°, side c = 2
2. a=10, side b= 7, side c =8
3. side a =1, side b =2, γ =60°
-
α = 10°, γ = 40°, side c = 2
10 + 40 + x = 180 ======> x = 130°
sin(C) / c = sin(α) / α
α = sin(α) * ( sin(C) / c )
α = sin(10) * ( sin(130) / 2 )
α ≈ 0.0665
sin(C) / c = sin(γ) / γ
γ = sin(40) * ( sin(130) / 2 )
γ ≈ 0.246
===============
c^2 = a^2 + b^2 - 2 * a * b * cos(c)
8^2 = 10^2 + 7^2 - 2 * 10 * 7 * cos(c)
64 = 100 + 49 - 140 * cos(c)
64 - 149 = - 140 * cos(c)
64 - 149 = - 140 * cos(c)
-85 = -140 * cos(c)
(85/140) = cos(c)
cos^-1( 85/140) = c
c = 52.62°
sin(C) / c = sin(A) / a
( sin(C) / c ) * a = sin(A)
( sin(52.62) / 8 ) * 10 = sin(A)
sin^-1( ( sin(52.62) / 8 ) * 10 ) = A
A ≈ 83.4°
180 = 83.4 + 52.62 + B
B = 43.98°
==================
γ^2 = a^2 + b^2 - 2 * a * b * cos(γ)
γ^2 = 1^2 + 2^2 - 2 * 1 * 2 * cos(60)
γ^2 = 1 + 4 - 4 * (1/2)
γ^2 = 5 - 2
γ = √(3)
sin(A) / a = sin(γ) / γ
sin(A) = ( sin(γ) / γ ) * a
A = sin^-1 ( ( sin(γ) / γ ) * a )
A = sin^-1 ( ( sin(60) / √(3) ) * 1 )
A = sin^-1 ( ( √(3)/2 / √(3) ) )
A = sin^-1 ( 1/2 )
A = 30°
180 = 60 + 30 + B
B = 90°
==========
Please let me know about the first question......
10 + 40 + x = 180 ======> x = 130°
sin(C) / c = sin(α) / α
α = sin(α) * ( sin(C) / c )
α = sin(10) * ( sin(130) / 2 )
α ≈ 0.0665
sin(C) / c = sin(γ) / γ
γ = sin(40) * ( sin(130) / 2 )
γ ≈ 0.246
===============
c^2 = a^2 + b^2 - 2 * a * b * cos(c)
8^2 = 10^2 + 7^2 - 2 * 10 * 7 * cos(c)
64 = 100 + 49 - 140 * cos(c)
64 - 149 = - 140 * cos(c)
64 - 149 = - 140 * cos(c)
-85 = -140 * cos(c)
(85/140) = cos(c)
cos^-1( 85/140) = c
c = 52.62°
sin(C) / c = sin(A) / a
( sin(C) / c ) * a = sin(A)
( sin(52.62) / 8 ) * 10 = sin(A)
sin^-1( ( sin(52.62) / 8 ) * 10 ) = A
A ≈ 83.4°
180 = 83.4 + 52.62 + B
B = 43.98°
==================
γ^2 = a^2 + b^2 - 2 * a * b * cos(γ)
γ^2 = 1^2 + 2^2 - 2 * 1 * 2 * cos(60)
γ^2 = 1 + 4 - 4 * (1/2)
γ^2 = 5 - 2
γ = √(3)
sin(A) / a = sin(γ) / γ
sin(A) = ( sin(γ) / γ ) * a
A = sin^-1 ( ( sin(γ) / γ ) * a )
A = sin^-1 ( ( sin(60) / √(3) ) * 1 )
A = sin^-1 ( ( √(3)/2 / √(3) ) )
A = sin^-1 ( 1/2 )
A = 30°
180 = 60 + 30 + B
B = 90°
==========
Please let me know about the first question......
-
your questions does not follow the usual convention . ie angle A is opposite side a, angle B is opposite side b and angle C is opposite side c.
or a diagram is needed.
or a diagram is needed.