I am able to get an answer but it is not a choice. Can you show me how to do it?
Calculate the value of the double integral
∫∫(subscript A) [2xcos(x+y)] dxdy
when A is the rectangle
{ (x,y): 0 ≤ x ≤ (pi/2), 0 ≤ y ≤ (pi/2) }
A. I = -(4-pi)
B. I = -2(4-pi)
C. I = -2pi
D. I = (4-pi)
E. I = (2pi)
F. I = pi
Calculate the value of the double integral
∫∫(subscript A) [2xcos(x+y)] dxdy
when A is the rectangle
{ (x,y): 0 ≤ x ≤ (pi/2), 0 ≤ y ≤ (pi/2) }
A. I = -(4-pi)
B. I = -2(4-pi)
C. I = -2pi
D. I = (4-pi)
E. I = (2pi)
F. I = pi
-
I got that the answer is A, here's how. Integrating over the square area with respect to x first I have
int(int(2x cos(x+y), x= 0..pi/2), y=0..pi/2)
= int( 2[cos(x+y) - x sin(x+y)]_0^pi/2, y=0..pi/2)
=int( (pi-2) cos(y) - 2 sin(y), y=0..pi/2)
= [2 cos(y) + (pi -2) sin(y)]_0^pi/2
= pi - 4
= -(4-pi)
Hope that helps
int(int(2x cos(x+y), x= 0..pi/2), y=0..pi/2)
= int( 2[cos(x+y) - x sin(x+y)]_0^pi/2, y=0..pi/2)
=int( (pi-2) cos(y) - 2 sin(y), y=0..pi/2)
= [2 cos(y) + (pi -2) sin(y)]_0^pi/2
= pi - 4
= -(4-pi)
Hope that helps