Determine the numbers of terms "n" in each geometric series
a1=-3, r=3, Sn= -363
just one problem so that i can understand
a1=-3, r=3, Sn= -363
just one problem so that i can understand
-
Sn = {a(r^n - 1)} / (r - 1)
-363 = (-3) (3^n -1) / (3 - 1)
(-363) 2 = (-3) (3^n - 1)
242 = 3^n - 1
3^n = 243
n = 5
-363 = (-3) (3^n -1) / (3 - 1)
(-363) 2 = (-3) (3^n - 1)
242 = 3^n - 1
3^n = 243
n = 5
-
numbers of terms "n" in geometric series a1=-3, r=3, Sn= -363 whence
-- 363 = -- 3 [3^n -- 1] / (3 -- 1) giving 3^n = 243 = 3^5 hence n = 5
-- 363 = -- 3 [3^n -- 1] / (3 -- 1) giving 3^n = 243 = 3^5 hence n = 5
-
Sn= a(1-r^n)/(1-r)
-363=(-3) (1-3^n)/(1-3)
121=(1-3^n)/-2
-242=(1-3^n)
-243= -3^n
243=3^n
3^5=3^n
n=5
-363=(-3) (1-3^n)/(1-3)
121=(1-3^n)/-2
-242=(1-3^n)
-243= -3^n
243=3^n
3^5=3^n
n=5