its
(x^4 + 1)^4 /4
;)
(x^4 + 1)^4 /4
;)
-
∫ 4x³(x^4 + 1)³ dx
Let u = x^4 + 1. Then,
du/dx = 4x³
du = 4x³ dx
So:
∫ u³ (4x³ dx)
= ∫ u³ du
Finally, by integral power rule ∫ xⁿ dx = x^(n + 1)/(n + 1) + c:
u^(3 + 1)/(3 + 1) + c
= u^4/(4) + c
= (x^4 + 1)^4/(4) + c
I hope this helps!
Let u = x^4 + 1. Then,
du/dx = 4x³
du = 4x³ dx
So:
∫ u³ (4x³ dx)
= ∫ u³ du
Finally, by integral power rule ∫ xⁿ dx = x^(n + 1)/(n + 1) + c:
u^(3 + 1)/(3 + 1) + c
= u^4/(4) + c
= (x^4 + 1)^4/(4) + c
I hope this helps!
-
Use a u substitution. Substitute u for x^4+1. 1/4(x^4+1)^4 is the answer.