I'm stuck with the last part of my assignment and I don't know where to start.
The position of a 55g oscillating mass is given by x(t) = (2.1cm)cost11t , where t is in seconds.
1. Determine the maximum speed
2. Determine the total energy
3. Determine the velocity at t = 0.36s
The position of a 55g oscillating mass is given by x(t) = (2.1cm)cost11t , where t is in seconds.
1. Determine the maximum speed
2. Determine the total energy
3. Determine the velocity at t = 0.36s
-
m=55g
x(t) = (2.1cm)cost11t
x(t) = Acoswt => A=2.1cm = 2.1*10^-2m the amplitude
and w=11 rad/s
1. v=wAcoswt but v=vmax if coswt=1=>
vmax=wA=11*2.1*10^-2=23,1*10^-2 m/s
2. E=1/2kA^2=(1/2)mw^2*A^2=
0.5*55*10^-3*121*(2.1)^2*10^-4=
14674.275*10^-7Joule
3. v=wAcoswt but t=0.36 => v= 23,1*10^-2 cos 11*0.36=23.04*10^-2 m/s
x(t) = (2.1cm)cost11t
x(t) = Acoswt => A=2.1cm = 2.1*10^-2m the amplitude
and w=11 rad/s
1. v=wAcoswt but v=vmax if coswt=1=>
vmax=wA=11*2.1*10^-2=23,1*10^-2 m/s
2. E=1/2kA^2=(1/2)mw^2*A^2=
0.5*55*10^-3*121*(2.1)^2*10^-4=
14674.275*10^-7Joule
3. v=wAcoswt but t=0.36 => v= 23,1*10^-2 cos 11*0.36=23.04*10^-2 m/s