Iron Oxide
University of California, Riverside nanotechnologists have succeeded in controlling the color of very small particles of iron oxide suspended in water simply by applying an external magnetic field to the solution. The discovery has potential to greatly improve the quality and size of electronic display screens and to enable the manufacture of products such as erasable and rewritable electronic paper and ink that can change color eletromagnetically.
In their experiments, the researchers found that by changing the strength of the magnetic field they were able to change the color of the iron oxide solution – similar to adjusting the color of a television screen image.
When the strength of the magnetic field is changed, it alters the arrangement of the spherical iron oxide particles in solution, thereby modifying how light falling on the particles passes through or is deflected by the solution.
http://newsroom.ucr.edu/1628
University of California, Riverside nanotechnologists have succeeded in controlling the color of very small particles of iron oxide suspended in water simply by applying an external magnetic field to the solution. The discovery has potential to greatly improve the quality and size of electronic display screens and to enable the manufacture of products such as erasable and rewritable electronic paper and ink that can change color eletromagnetically.
In their experiments, the researchers found that by changing the strength of the magnetic field they were able to change the color of the iron oxide solution – similar to adjusting the color of a television screen image.
When the strength of the magnetic field is changed, it alters the arrangement of the spherical iron oxide particles in solution, thereby modifying how light falling on the particles passes through or is deflected by the solution.
http://newsroom.ucr.edu/1628