Please Tomorrow is my test. I need help with this Taylor topic.
-
f(0)=1,
f'(x)=-1/(1+x)^2, so f'(0)=-1,
f"(x)=2/(1+x)^3, so f"(0)=2
The Taylor (MacLaurin) series of order 2 is
f(x)=f(0) + xf'(0) + (x²/2!)f"(0)
= 1 - x + x²
f'(x)=-1/(1+x)^2, so f'(0)=-1,
f"(x)=2/(1+x)^3, so f"(0)=2
The Taylor (MacLaurin) series of order 2 is
f(x)=f(0) + xf'(0) + (x²/2!)f"(0)
= 1 - x + x²