the answer is supposed to be cos4x
-
cos^2(2x) - sin^2(2x)
u = 2x
cos^2(u) - sin^2(u)
cos^2(x) - sin^2(x) = cos(2x)....
Therefore:
cos^2(u) - sin^2(u) = cos(2u)
Back substitute:
cos(2(2x)) = cos(4x)
u = 2x
cos^2(u) - sin^2(u)
cos^2(x) - sin^2(x) = cos(2x)....
Therefore:
cos^2(u) - sin^2(u) = cos(2u)
Back substitute:
cos(2(2x)) = cos(4x)
-
solve(cos(2*x)^2 - sin(2*x)^2 = 0)
x = (1/8)*π or x = (3/8)*π
x = (1/8)*π or x = (3/8)*π