f(x) = ((x^(-2)).(lnx))
-
f(x) = x^(-2) (ln x)
max, min or saddle point when
df/dx = 0
df/dx = (1 - 2 ln (x))/x^3 = 0
1 - 2 ln x = 0
x = √e
y = x^(-2) (ln x)
y = (√e)^(-2) (ln (√e))
y = 1/(2e)
inflection point when,
d²f/dx² = 0
d²f/dx² = (6 ln (x) - 5)/x^4 = 0
6 ln (x) - 5 = 0
x = e^(5/6)
y = x^(-2) (ln x)
y = (e^(5/6))^(-2) (ln (e^(5/6)))
y = 5/(6 e^(5/3))
max, min or saddle point when
df/dx = 0
df/dx = (1 - 2 ln (x))/x^3 = 0
1 - 2 ln x = 0
x = √e
y = x^(-2) (ln x)
y = (√e)^(-2) (ln (√e))
y = 1/(2e)
inflection point when,
d²f/dx² = 0
d²f/dx² = (6 ln (x) - 5)/x^4 = 0
6 ln (x) - 5 = 0
x = e^(5/6)
y = x^(-2) (ln x)
y = (e^(5/6))^(-2) (ln (e^(5/6)))
y = 5/(6 e^(5/3))