Eliminate the parameter t to find a Cartesian equation for:
x=t^2
y=8+3t
x=Ay^2 + By +C
where A=?
B=?
C=?
x=t^2
y=8+3t
x=Ay^2 + By +C
where A=?
B=?
C=?
-
y = 8 + 3t
3t = y - 8
t = (1/3) * (y - 8)
x = t^2
x = (1/3)^2 * (y - 8)^2
x = (1/9) * (y^2 - 16y + 64)
y = (1/9) * y^2 - (16/9) * y + (64/9)
3t = y - 8
t = (1/3) * (y - 8)
x = t^2
x = (1/3)^2 * (y - 8)^2
x = (1/9) * (y^2 - 16y + 64)
y = (1/9) * y^2 - (16/9) * y + (64/9)
-
x=t²
y=8+3t
we need to find values of A,B and C such that:
x=Ay²+By+C
y=8+3t
3t=y-8
t=(y-8)/3
x=t² =>[(y-8)/3]²
x=(y-8)² / 9
x = y²-16y+64 / 9
x= (1/9)y² +(-16/9)y +64/9
A=1/9
B=-16/9
C=64/9
y=8+3t
we need to find values of A,B and C such that:
x=Ay²+By+C
y=8+3t
3t=y-8
t=(y-8)/3
x=t² =>[(y-8)/3]²
x=(y-8)² / 9
x = y²-16y+64 / 9
x= (1/9)y² +(-16/9)y +64/9
A=1/9
B=-16/9
C=64/9