. Show that the integer 645 is a pseudoprime but not an Euler pseudoprime to the base 2
Favorites|Homepage
Subscriptions | sitemap
HOME > > . Show that the integer 645 is a pseudoprime but not an Euler pseudoprime to the base 2

. Show that the integer 645 is a pseudoprime but not an Euler pseudoprime to the base 2

[From: ] [author: ] [Date: 12-05-15] [Hit: ]
............
Note that working mod 645,
2^((645 - 1)/2) = 2^322
.....................= (2^14)^23
.....................= 259^23
.....................= (259^3)^7 * 259^2
.....................= 259^7 * 259^2
.....................= (259^3)^3
.....................= 259^3
.....................= 259 (mod 645), which is not 1 or -1 mod 645.

However,
2^(645 - 1) = (2^322)^2
................= 259^2
................= 1 (mod 645).

Hence, 645 is (Fermat) pseudoprime base 2, but is not Euler pseudoprime base 2.

I hope this helps!
1
keywords: Show,an,that,base,integer,not,is,645,but,Euler,to,pseudoprime,the,. Show that the integer 645 is a pseudoprime but not an Euler pseudoprime to the base 2
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .