I always give 10 points to correct answers
-
integral (-9+6 x+15 x^2)/(3 x) dx
Factor out constants
= 1/3 integral (15 x^2+6 x-9)/x dx
For the integrand (15 x^2+6 x-9)/x, do long division:
= 1/3 integral (15 x-9/x+6) dx
= 1/3 integral 6 dx-3 integral 1/x dx+5 integral x dx
= 2 x-3 integral 1/x dx+5 integral x dx
The integral of 1/x is log(x):
= 2 x-3 log(x)+5 integral x dx
= (5 x^2)/2+2 x-3 log(x)+constant
Factor out constants
= 1/3 integral (15 x^2+6 x-9)/x dx
For the integrand (15 x^2+6 x-9)/x, do long division:
= 1/3 integral (15 x-9/x+6) dx
= 1/3 integral 6 dx-3 integral 1/x dx+5 integral x dx
= 2 x-3 integral 1/x dx+5 integral x dx
The integral of 1/x is log(x):
= 2 x-3 log(x)+5 integral x dx
= (5 x^2)/2+2 x-3 log(x)+constant
-
∫ (15x² + 6x − 9) / (3x) dx
= ∫ (15x²/(3x) + 6x/(3x) − 9/(3x)) dx
= ∫ (5x + 2 − 3/x) dx
= 5x²/2 + 2x − 3ln(x) + C
= ∫ (15x²/(3x) + 6x/(3x) − 9/(3x)) dx
= ∫ (5x + 2 − 3/x) dx
= 5x²/2 + 2x − 3ln(x) + C
-
http://jsfiddle.net/Sxv7f/1/embedded/res…