I have this urge to multiply.. but I think I should just make the denominators the same right? And then go from there?
=O
=O
-
take the LCM & solve
[(1-cos x) + (1+cos x) ] / [(1+cos x)( (1-cos x)]
2 / (1-cos^2 x)
2 / sin^2 x
2 cosec^2 x
[(1-cos x) + (1+cos x) ] / [(1+cos x)( (1-cos x)]
2 / (1-cos^2 x)
2 / sin^2 x
2 cosec^2 x
-
Common denominator = (1 + cosx)(1 - cosx)
1/(1+ cosx) + 1/(1 - cosx) = (1 - cosx + 1 + cosx)/(1 + cosx)(1 - cosx)
. . . . . . . . . . . . . . . . . . . = 2/(1 + cosx)(1 - cosx)
. . . . . . . . . . . . . . . . . . . = 2/(1 - cos²x)
. . . . . . . . . . . . . . . . . . . = 2/sin²x
. . . . . . . . . . . . . . . . . . . = 2 csc²x
1/(1+ cosx) + 1/(1 - cosx) = (1 - cosx + 1 + cosx)/(1 + cosx)(1 - cosx)
. . . . . . . . . . . . . . . . . . . = 2/(1 + cosx)(1 - cosx)
. . . . . . . . . . . . . . . . . . . = 2/(1 - cos²x)
. . . . . . . . . . . . . . . . . . . = 2/sin²x
. . . . . . . . . . . . . . . . . . . = 2 csc²x
-
Yes, use common denominator:
1/(1+cosx) + 1/(1-cosx)
= ((1-cosx) + (1+cosx)) / ((1+cosx)(1-cosx))
= 2 / (1-cos²x)
= 2 / sin²x
= 2 csc²x
1/(1+cosx) + 1/(1-cosx)
= ((1-cosx) + (1+cosx)) / ((1+cosx)(1-cosx))
= 2 / (1-cos²x)
= 2 / sin²x
= 2 csc²x
-
((1-cosx) + (1+cosx))/ ((1+cosx)(1-cosx)) = 2/1-cos^2(x)= 2/sin^2(x)
-
2 Csc[x]^2