How do I solve for
-20 + 6w ≤ 40
and
13< y + 3(-4y+8)
can you show me the work please
thank you
-20 + 6w ≤ 40
and
13< y + 3(-4y+8)
can you show me the work please
thank you
-
Solve inequalities just like equalities
Except if you multiply or divide by a negative
switch the direction of the inequality.
- 20 + 6w ≤ 40.......add 20
6w ≤ 60.................divide by 6
w ≤ 10
13 < y + 3( - 4y + 8)........distribute the multiply
13 < y -12y + 24
13 < -11y + 24................Isolate the variable term - 24
-11 < - 11y......................Divide by -11 and switch inequalities direction.
1> y or if you prefer y < 1
Except if you multiply or divide by a negative
switch the direction of the inequality.
- 20 + 6w ≤ 40.......add 20
6w ≤ 60.................divide by 6
w ≤ 10
13 < y + 3( - 4y + 8)........distribute the multiply
13 < y -12y + 24
13 < -11y + 24................Isolate the variable term - 24
-11 < - 11y......................Divide by -11 and switch inequalities direction.
1> y or if you prefer y < 1
-
* = Times
< = Less Than
13 < y + 3 * (-4y + 8)
If the Answer can be Any Number, the answer is 2:
2 + 3 * (-4 * 2 + 8) = 5 * 0 = 0
If the Answer can only be a Negative Number, the answer is 3:
3 + 3 * ((-4 * 3) + 8) = 6 * -4 = 24
< = Less Than
13 < y + 3 * (-4y + 8)
If the Answer can be Any Number, the answer is 2:
2 + 3 * (-4 * 2 + 8) = 5 * 0 = 0
If the Answer can only be a Negative Number, the answer is 3:
3 + 3 * ((-4 * 3) + 8) = 6 * -4 = 24
-
−20 + 6w ≤ 40
6w ≤ 40 + 20
6w ≤ 60
w ≤ 60/6
w ≤ 10
13 < y + 3(−4y+8)
13 < y − 12y + 24
13 < −11y + 24
11y < 24 − 13
11y < 11
y < 1
6w ≤ 40 + 20
6w ≤ 60
w ≤ 60/6
w ≤ 10
13 < y + 3(−4y+8)
13 < y − 12y + 24
13 < −11y + 24
11y < 24 − 13
11y < 11
y < 1
-
6w = 40 + 20
6w = 60
w = 10
13 < y + 3 * (-4y + 8)
13 < y - 12y + 24
-11 < -11y
11y < 11
y < 1
6w = 60
w = 10
13 < y + 3 * (-4y + 8)
13 < y - 12y + 24
-11 < -11y
11y < 11
y < 1
-
-20+6w<= 40
6w<=60
w<= 10
13
13<-11y+24
-11<-11y
1>y
6w<=60
w<= 10
13
-11<-11y
1>y