y[1] = 12 * sin(90) = 12 * 1 = 12
y[2] = 4 * sin(225) = 4 * -sqrt(2)/2 = -2 * sqrt(2)
x[1] = 12 * cos(90) = 12 * 0 = 0
x[2] = 4 * cos(225) = 4 * -sqrt(2)/2 = -2 * sqrt(2)
Overall, y = 12 - 2 * sqrt(2) and x = -2 * sqrt(2)
sqrt(x^2 + y^2) =>
sqrt(8 + 144 - 48 * sqrt(2) + 8) =>
sqrt(160 - 48 * sqrt(2)) =>
sqrt(16) * sqrt(10 - 3 * sqrt(2)) =>
4 * sqrt(10 - 3 * sqrt(2)) =>
9.5977991751281938175426819963171
x = -2 * sqrt(2)
9.6 * cos(t) = -2 * sqrt(2)
cos(t) = -2 * sqrt(2) / 9.6
t = arccos(-2 * sqrt(2) / 9.6)
t = +/- 107.14 degrees
y = 12 - 2 * sqrt(2)
9.6 * sin(t) = 12 - 2 * sqrt(2)
sin(t) = (12 - 2 * sqrt(2)) / 9.6
t = arcsin(12 - 2 * sqrt(2)) / 9.6
t = 107.14 , 72.86 degrees
107.14 degrees (17.14 degrees past the 90 degree mark I set for North; you should note that 342.86 degrees is 17.14 degrees from 360 degrees, so the math is right, I just oriented the bearings incorrectly) at 9.6 mph