f(t)=
{ t, 0<= t < 1,
{ 1, t>= 1.
Appreciate the help !
{ t, 0<= t < 1,
{ 1, t>= 1.
Appreciate the help !
-
You can write f in terms of the unit step function.
f(t) = t - tU(t - 1) + U(t - 1) = t - (t - 1)U(t - 1).
Then use the following shift theorem:
If L{g(t)} = G(s), then L{g(t - a)U(t - a)} = e^(-as)G(s).
So for your function
L{f(t)} = 1/s² - e^(-s)/s² = (1 - e^(-s))/s².
You can also use the definition and compute the appropriate integral. You'll arrive at the same result.
f(t) = t - tU(t - 1) + U(t - 1) = t - (t - 1)U(t - 1).
Then use the following shift theorem:
If L{g(t)} = G(s), then L{g(t - a)U(t - a)} = e^(-as)G(s).
So for your function
L{f(t)} = 1/s² - e^(-s)/s² = (1 - e^(-s))/s².
You can also use the definition and compute the appropriate integral. You'll arrive at the same result.