Assuming that F, G, J, and K are real-valued, this is true.
Given F(x) + i*G(x) = J(x) + i*K(x):
Take conjugates of both sides:
F(x) - i*G(x) = J(x) - i*K(x).
Adding these equations yields
2 F(x) = 2 J(x) ==> F(x) = J(x).
Hence, F(x) + i * G(x) = F(x) + i * K(x) ==> G(x) = K(x).
I hope this helps!
Given F(x) + i*G(x) = J(x) + i*K(x):
Take conjugates of both sides:
F(x) - i*G(x) = J(x) - i*K(x).
Adding these equations yields
2 F(x) = 2 J(x) ==> F(x) = J(x).
Hence, F(x) + i * G(x) = F(x) + i * K(x) ==> G(x) = K(x).
I hope this helps!