I need a little help with these derivatives. I have the basic numbers down but when cos, sin, tan, etc are involved I suck haha. So please help!
Find dy/dx
y= (5/cos x) + (1/tan x)
Thank you again!
Find dy/dx
y= (5/cos x) + (1/tan x)
Thank you again!
-
y= (5/cos x) + (1/tan x)
y = 5 secx + Cot x
dy/dx = 5 (-secx tanx) + (-cosce²x)
dy/dx = -5secx tanx - cosce²x
y= 7x^2 sin x + 14x cos x - 14 sin x.
dy/dx = 7{2xsin x + x^2 cosx} + 14{1 cos x + x (-sinx)} - 14 cosx
dy/dx = 7{2xsin x + x^2 cosx} + 14{cos x - xsinx)} - 14 cosx
dy/dx = 14xsin x + 7x^2 cosx + 14cos x - 14xsinx - 14 cosx
dy/dx = 7x^2 cosx
y = 5 secx + Cot x
dy/dx = 5 (-secx tanx) + (-cosce²x)
dy/dx = -5secx tanx - cosce²x
y= 7x^2 sin x + 14x cos x - 14 sin x.
dy/dx = 7{2xsin x + x^2 cosx} + 14{1 cos x + x (-sinx)} - 14 cosx
dy/dx = 7{2xsin x + x^2 cosx} + 14{cos x - xsinx)} - 14 cosx
dy/dx = 14xsin x + 7x^2 cosx + 14cos x - 14xsinx - 14 cosx
dy/dx = 7x^2 cosx
-
If : y = (5/cos x) + (1/tan x), then
... y = 5( sec x ) + ( cot x )
∴ y' = 5. d/dx( sec x ) + d/dx( cot x )
∴ y' = 5( sec x tan x ) + ( -csc² x ) .................. Ans.
______________________________
... y = 5( sec x ) + ( cot x )
∴ y' = 5. d/dx( sec x ) + d/dx( cot x )
∴ y' = 5( sec x tan x ) + ( -csc² x ) .................. Ans.
______________________________