I am struggling with implict differentiation if someone could help me. The question says: "Use implict differentiation to find dy/dx if y - sin(xy) = x^2"
Also this problem, "Find dy/dx if y = tan^-1(x-4)"
Thanks :)
Also this problem, "Find dy/dx if y = tan^-1(x-4)"
Thanks :)
-
1.) y - sin(xy) = x²
Differentiating implicitly:
y' - cos(xy)*(xy' + y) = 2x
y' - xy'*cos(xy) - y*cos(xy) = 2x
y' = (2x + y*cos(xy))/(1 - x*cos(xy))
2.) y = arctan(x - 4)
dy/dx = 1/[(x - 4)² + 1]
Differentiating implicitly:
y' - cos(xy)*(xy' + y) = 2x
y' - xy'*cos(xy) - y*cos(xy) = 2x
y' = (2x + y*cos(xy))/(1 - x*cos(xy))
2.) y = arctan(x - 4)
dy/dx = 1/[(x - 4)² + 1]
-
A) if y - sin(xy) = x^2
or y - sin(xy) = x²
Differentiating implicitly:
y' - cos(xy)*(xy' + y) = 2x
y' - xy'*cos(xy) - y*cos(xy) = 2x
y' = (2x + y*cos(xy))/(1 - x*cos(xy))
B.) y = arctan(x - 4)
dy/dx = 1/[(x - 4)² + 1]
or y - sin(xy) = x²
Differentiating implicitly:
y' - cos(xy)*(xy' + y) = 2x
y' - xy'*cos(xy) - y*cos(xy) = 2x
y' = (2x + y*cos(xy))/(1 - x*cos(xy))
B.) y = arctan(x - 4)
dy/dx = 1/[(x - 4)² + 1]