f '(x) = 3 - 2x, y(0) = 5
and
f "(x) - 3x² - 2x, f(0) = 4, f '(1) = 3
thanks
and
f "(x) - 3x² - 2x, f(0) = 4, f '(1) = 3
thanks
-
f'(x) = 3 − 2x
f(x) = ∫ (3 − 2x) dx
f(x) = 3x − x² + C
f(0) = 5 -----> C = 5
f(x) = −x² + 3x + 5
------------------------------
f''(x) = 3x² − 2x
f'(x) = ∫ (3x² − 2x) dx
f'(x) = x³ − x² + C
f'(1) = 3 -----> 1 − 1 + C = 3 -----> C = 3
f'(x) = x³ − x² + 3
f(x) = ∫ (x³ − x² + 3) dx
f(x) = 1/4 x⁴ − 1/3 x³ + 3x + C
f(0) = 4 -----> C = 4
f(x) = 1/4 x⁴ − 1/3 x³ + 3x + 4
Mαthmφm
f(x) = ∫ (3 − 2x) dx
f(x) = 3x − x² + C
f(0) = 5 -----> C = 5
f(x) = −x² + 3x + 5
------------------------------
f''(x) = 3x² − 2x
f'(x) = ∫ (3x² − 2x) dx
f'(x) = x³ − x² + C
f'(1) = 3 -----> 1 − 1 + C = 3 -----> C = 3
f'(x) = x³ − x² + 3
f(x) = ∫ (x³ − x² + 3) dx
f(x) = 1/4 x⁴ − 1/3 x³ + 3x + C
f(0) = 4 -----> C = 4
f(x) = 1/4 x⁴ − 1/3 x³ + 3x + 4
Mαthmφm