Determine (f^-1)'(5)
The answer should be 1/11
The answer should be 1/11
-
You want to find x such that f(x) = 5. By observation, f(1) = 5. Now use the fact that
d/dx f^(-1)(a) = 1/f '(b)
provided f '(b) ≠ 0 and f(b) = a.
f '(x) = 5x^4 + 3x² + 3 ==> f '(1) = 5 + 3 + 3 = 11.
So
d/dx f^(-1)(5) = 1/f '(1) = 1/11.
d/dx f^(-1)(a) = 1/f '(b)
provided f '(b) ≠ 0 and f(b) = a.
f '(x) = 5x^4 + 3x² + 3 ==> f '(1) = 5 + 3 + 3 = 11.
So
d/dx f^(-1)(5) = 1/f '(1) = 1/11.
-
First note that
f(1) = 1+1+3 = 5 ==> f ˉ¹ (5) = 1
Also
f ' (x) = 5x⁴ + 3x² +3
==> f ' (1) = 5+3+3= 11
-------------------------------------
f(f ˉ¹ (x)) =x
Take derivative of both sides (use chain rule for the left-hand side)
[(f ˉ¹) ' (x)] * [f ' (fˉ¹(x))] = 1
Plug x =5
[(f ˉ¹) ' (5)] * [f ' (fˉ¹(5))] = 1
==> [(f ˉ¹) ' (5)] = 1/ f ' (fˉ¹(5)) = 1/ f ' (1) = 1/11
f(1) = 1+1+3 = 5 ==> f ˉ¹ (5) = 1
Also
f ' (x) = 5x⁴ + 3x² +3
==> f ' (1) = 5+3+3= 11
-------------------------------------
f(f ˉ¹ (x)) =x
Take derivative of both sides (use chain rule for the left-hand side)
[(f ˉ¹) ' (x)] * [f ' (fˉ¹(x))] = 1
Plug x =5
[(f ˉ¹) ' (5)] * [f ' (fˉ¹(5))] = 1
==> [(f ˉ¹) ' (5)] = 1/ f ' (fˉ¹(5)) = 1/ f ' (1) = 1/11