Show that : d(e+logx^e)={e/x.log^(e-x)(x)}dx
Favorites|Homepage
Subscriptions | sitemap
HOME > > Show that : d(e+logx^e)={e/x.log^(e-x)(x)}dx

Show that : d(e+logx^e)={e/x.log^(e-x)(x)}dx

[From: ] [author: ] [Date: 11-11-29] [Hit: ]
do you want to prove this ?Prove: L.H.= 0+ e.= e.log^(e-x)(x).......
I am not sure, What you want to prove : However,

d(e+logx^e)={e/x.log^(e-x)(x)}dx

=>d/dx(e+logx^e)={e/x.log^(e-x)(x)}

do you want to prove this ?

Prove: L.H.S

= d/dx(e+logx^e)

= d/dx(e)+d/dx(logx^e) [d/dx(e)=0]

= 0+ e.log^(e-x)(x)(d/dx(logx))

= e.log^(e-x)(x).(1/x)

=e/x.log^(e-x)(x)

=R.H.S

-
What is the meaning of log^(e - x)(x) ? Clarify
1
keywords: that,log,Show,logx,dx,Show that : d(e+logx^e)={e/x.log^(e-x)(x)}dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .