I am not sure, What you want to prove : However,
d(e+logx^e)={e/x.log^(e-x)(x)}dx
=>d/dx(e+logx^e)={e/x.log^(e-x)(x)}
do you want to prove this ?
Prove: L.H.S
= d/dx(e+logx^e)
= d/dx(e)+d/dx(logx^e) [d/dx(e)=0]
= 0+ e.log^(e-x)(x)(d/dx(logx))
= e.log^(e-x)(x).(1/x)
=e/x.log^(e-x)(x)
=R.H.S
d(e+logx^e)={e/x.log^(e-x)(x)}dx
=>d/dx(e+logx^e)={e/x.log^(e-x)(x)}
do you want to prove this ?
Prove: L.H.S
= d/dx(e+logx^e)
= d/dx(e)+d/dx(logx^e) [d/dx(e)=0]
= 0+ e.log^(e-x)(x)(d/dx(logx))
= e.log^(e-x)(x).(1/x)
=e/x.log^(e-x)(x)
=R.H.S
-
What is the meaning of log^(e - x)(x) ? Clarify