Rearrange the terms of the LHS to get a factor s + 2 as follows : LHS = s³ + 6s² +18s + 20 =s³ + 2s² + 4s² + 8s + 10s + 20 = (s³ + 2s²) + (4s² + 8s) + (10s + 20) = s²(s + 2) + 4s(s + 2) + 10(s + 2) = (s + 2)(s² + 4s + 10) Do you understand now?-s^3 + 6s^2 + 18s + 20 =0s(s^2 + 6s + 18 + 20) = 0s(s^2 + 6s) = - 381. s = -382. s^2 + 6ss(s + 6) = 0s = 03.......
Substituting the variables back, yields :
t = cuberoot(u) = 1.00000000.
z = 0.00000000.
y = 0.00000000.
x = -2.00000000.
The other roots can be found by dividing and solving the remaining quadratic equation.
The other roots are complex : -2.00000000 +- 2.44948974 i.