What is the derivative of 2^(1-x)?
I need to figure out the slope of the tangent line at x=2
I need to figure out the slope of the tangent line at x=2
-
d/dx[2^(1-x)] = 2^(1-x)*ln(1/2)
Slope of the tangent line at x = 2 : 1/2*ln(1/2)
Slope of the tangent line at x = 2 : 1/2*ln(1/2)
-
y = 2^(1-x)
ln y = (1-x) ln (2)
y'/y = - ln 2
y' = - y ln 2
y ' = -2^(1-x) ln (2)
//////////////////////////////////////…
at x = 2
y ' = -2^(-1) ln(2)
y ' = - 0.5 ln (2)
ln y = (1-x) ln (2)
y'/y = - ln 2
y' = - y ln 2
y ' = -2^(1-x) ln (2)
//////////////////////////////////////…
at x = 2
y ' = -2^(-1) ln(2)
y ' = - 0.5 ln (2)
-
y = 2^(1 - x)
log y = ( 1 - x ) log 2
(1/y) dy/dx = - log 2
dy/dx = - y log 2
dy/dx = - 2^(1 - x) log 2
dy/dx = - 2^(-1) log 2
dy/dx = - log 2 / 2
log y = ( 1 - x ) log 2
(1/y) dy/dx = - log 2
dy/dx = - y log 2
dy/dx = - 2^(1 - x) log 2
dy/dx = - 2^(-1) log 2
dy/dx = - log 2 / 2