Directions: Rationalize the denominator and simplify. Show the steps.
3 √2
---------------------
4√3 - √8
HINT: my book says the answer is:
3√6 + 3
----------------
10
I KEEP GETTING THIS ANSWER:
12√6 + 12
-------------------
47
3 √2
---------------------
4√3 - √8
HINT: my book says the answer is:
3√6 + 3
----------------
10
I KEEP GETTING THIS ANSWER:
12√6 + 12
-------------------
47
-
3 √2
---------------------
(4√3 - √8)
3 √2(4√3 + √8)
---------------------
(4√3 - √8)(4√3 + √8)
12√6 + 3√16
---------------------
(48 - 8)
3√6 + 3
----------------
10
---------------------
(4√3 - √8)
3 √2(4√3 + √8)
---------------------
(4√3 - √8)(4√3 + √8)
12√6 + 3√16
---------------------
(48 - 8)
3√6 + 3
----------------
10
-
(3√2)/[(4√3) - (√8)]
multiply the numerator and denominator by the conjugate of the denominator...
numerator...(3√2) * [(4√3) + √8] = 12√6 + 12
denominator...[(4√3) - √8] * [(4√3) + √8] = 48 - 8 = 40
simplify...common factor of 4 in the numerator and denominator
so,
[(3√6) + 3] / 10
Show your work to learn your mistakes...practice.
multiply the numerator and denominator by the conjugate of the denominator...
numerator...(3√2) * [(4√3) + √8] = 12√6 + 12
denominator...[(4√3) - √8] * [(4√3) + √8] = 48 - 8 = 40
simplify...common factor of 4 in the numerator and denominator
so,
[(3√6) + 3] / 10
Show your work to learn your mistakes...practice.
-
(3√2) / (4√3 - √8)
(3√2) (4√3 + √8) / (4√3 - √8)(4√3 + √8)
(3√2) (4√3 + √8) / (16*3 -8)
(3√2) (4√3 + √8) / (48 -8)
(3√2) (4√3 + √8) / 40
[12√(2*3) + 3√(2*8)] / 40
[12√(6) + 3√(16)] / 40
[12√(6) + 3*4] / 40
[4*3√(6) + 4*3] / 40
4[3√(6) + 3] / 40
[3√(6) + 3] / 10
I hope this helps!
(3√2) (4√3 + √8) / (4√3 - √8)(4√3 + √8)
(3√2) (4√3 + √8) / (16*3 -8)
(3√2) (4√3 + √8) / (48 -8)
(3√2) (4√3 + √8) / 40
[12√(2*3) + 3√(2*8)] / 40
[12√(6) + 3√(16)] / 40
[12√(6) + 3*4] / 40
[4*3√(6) + 4*3] / 40
4[3√(6) + 3] / 40
[3√(6) + 3] / 10
I hope this helps!
-
4 sqrt 3 - sqrt 8
4 sqrt 3+ sq rt 8
-------------------------
4 sqrt 24 -8
48 -4 sqrt 24
------------------------------------
40
4 sq rt 3+ sqrt 8
3 sq rt 2
---------------------------------
12 sq rt 6 + 3 sq rt 16
12 sqrt 6+12
----------------------
40 take 4 out of the denominator and numerator
3 sqrt 6+3
-----------------
10
4 sqrt 3+ sq rt 8
-------------------------
4 sqrt 24 -8
48 -4 sqrt 24
------------------------------------
40
4 sq rt 3+ sqrt 8
3 sq rt 2
---------------------------------
12 sq rt 6 + 3 sq rt 16
12 sqrt 6+12
----------------------
40 take 4 out of the denominator and numerator
3 sqrt 6+3
-----------------
10
-
the boks answer is correct!
lemme show u;
3 √2 4√3+√8
--------------------- * --------------
4√3 - √8 4√3+√8
12√6+3√16
------------------
40 using a square-b square formula
12√6+ 3*4
---------------
40
12√6+12
-------------
40
12(√6+1) = 3√6 + 3
------------- -------------
40 10
lemme show u;
3 √2 4√3+√8
--------------------- * --------------
4√3 - √8 4√3+√8
12√6+3√16
------------------
40 using a square-b square formula
12√6+ 3*4
---------------
40
12√6+12
-------------
40
12(√6+1) = 3√6 + 3
------------- -------------
40 10
-
3 √2 4√3 +√8
--------------------- --------------------
4√3 - √8 4√3 - √8
12√6+3√16
---------------------
(4√3)^2 - (√8)^2 since a+b x a-b =a^2-b^2
12√6+3(4)
--------------------
16x3 -8
12√6+12
--------------------
40
taking 4 common
4(3√6+3)
--------------------
40
(3√6+3)
--------------------
10
--------------------- --------------------
4√3 - √8 4√3 - √8
12√6+3√16
---------------------
(4√3)^2 - (√8)^2 since a+b x a-b =a^2-b^2
12√6+3(4)
--------------------
16x3 -8
12√6+12
--------------------
40
taking 4 common
4(3√6+3)
--------------------
40
(3√6+3)
--------------------
10