Find the indefinite integral: (6x3 - 3x + 1) dx
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Find the indefinite integral: (6x3 - 3x + 1) dx

Find the indefinite integral: (6x3 - 3x + 1) dx

[From: ] [author: ] [Date: 11-05-06] [Hit: ]
......
Use "k" for an arbitrary constant.
Dx and dx are not the same.
All the coefficients are integers.

-
separate into 3 integrals

integral(6x^3 dx)-integral(3x dx)+integral(1 dx)+k

6[integral(x^3 dx)]-3[integral(x dx)]+integral(1 dx)+k

6(x^4/4)-3(x^2/2)+x+k

(6x^4)/4-(3x^2)/2+x+k

-
Recall that the ∫x^(n) dx = x^(n + 1)/(n + 1) + k
In this case:

∫(6x^3 - 3x + 1) dx = 3x^4/2 - 3x²/2 + x + k where "k" is an arbitrary constant

-
The integral of 6x^3 - 3x + 1 dx
is (3/2)x^4 - (3/2)x^2 + x + k.
1
keywords: indefinite,the,integral,dx,Find,Find the indefinite integral: (6x3 - 3x + 1) dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .