Find the derivative of the function y = cos(cos(cos(x))).
-
Chain rule three times in a row!
let's take an arbitrary differentiable function f instead of cos ( just because f is easier to type that cos :) )
(f(f(f(x))))' = f ' (f(f(x))) (f(f(x))) ' = f ' (f(f(x))) f ' (f(x)) f ' (x)
if f = cos then f ' = -sin so this is:
(cos(cos(cos(x)))) ' = -sin(cos(cos(x))) * -sin(cos(x)) * -sin(x) = -sin(cos(cos(x))) * sin(cos(x)) * sin(x)
let's take an arbitrary differentiable function f instead of cos ( just because f is easier to type that cos :) )
(f(f(f(x))))' = f ' (f(f(x))) (f(f(x))) ' = f ' (f(f(x))) f ' (f(x)) f ' (x)
if f = cos then f ' = -sin so this is:
(cos(cos(cos(x)))) ' = -sin(cos(cos(x))) * -sin(cos(x)) * -sin(x) = -sin(cos(cos(x))) * sin(cos(x)) * sin(x)
-
y = cos(cos(cos(x))) 's derivative is :
-sin(cos(cos(x)))*sin(cos(x))*sin(x)
-sin(cos(cos(x)))*sin(cos(x))*sin(x)