1) By identity, sec²x - 1 = tan²x
==> tan(x) = ±√(sec²x - 1)
2) So, ±√(sec²x - 1) = 2 - sec(x)
3) Squaring both sides, (sec²x - 1) = 4 - 4sec(x) + sec²x
simplifying, 4sec(x) = 5
Hence, sec(x) = 5/4
==> tan(x) = ±√(sec²x - 1)
2) So, ±√(sec²x - 1) = 2 - sec(x)
3) Squaring both sides, (sec²x - 1) = 4 - 4sec(x) + sec²x
simplifying, 4sec(x) = 5
Hence, sec(x) = 5/4
-
∵ sec x + tan x = 2 ......... and ( s + t )( s - t ) = 1
∴ sec x - tan x = 1/2
∴ adding : 2 sec x = 2 + 1/2
∴ sec x = 5/4 ................................ Ans.
________________________
Happy To Help !
________________________
∴ sec x - tan x = 1/2
∴ adding : 2 sec x = 2 + 1/2
∴ sec x = 5/4 ................................ Ans.
________________________
Happy To Help !
________________________