Solve the given DE:
1) y' = x^2 / y
2) y' = x^2 / y(1+x^3)
Please include steps so i can see
Thank you
1) y' = x^2 / y
2) y' = x^2 / y(1+x^3)
Please include steps so i can see
Thank you
-
1)
dy/dx= x^2/y
y dy = x^2 dx
y^2/2 = x^3/3 +C
y = sq.rt.(2/3x^3) + C
2. dy/dx = x^2/y(1+x^3)
y dy = (x^2/(1+x^3) dx (using u substitution)
1/3 integral(du/u) = 1/3ln|u| = 1/3 ln| 1 + x ^3 |
y^2/2 = 1/3 ln| 1 + x^3 | + C
y = sq.rt.(2/3ln(1+x^3)) + C
dy/dx= x^2/y
y dy = x^2 dx
y^2/2 = x^3/3 +C
y = sq.rt.(2/3x^3) + C
2. dy/dx = x^2/y(1+x^3)
y dy = (x^2/(1+x^3) dx (using u substitution)
1/3 integral(du/u) = 1/3ln|u| = 1/3 ln| 1 + x ^3 |
y^2/2 = 1/3 ln| 1 + x^3 | + C
y = sq.rt.(2/3ln(1+x^3)) + C