dx/(1-sinx)
-
multiply top and bottom by (1 + sin(x)
∫ (1 + sin(x)) / (1 - sin^2(x)) dx
= ∫ (1 + sin(x)) / (cos^2(x)) dx
= ∫ sec^2(x) + sin(x)/cos^2(x) dx
∫(sec^2(x) + sin(x)/cos^2(x) dx)
= ∫(sec^2(x) dx) + ∫(sin(x)/cos^2(x) dx)
let u = cos(x) so du = -sin(x)
= ∫(sec^2(x) dx) - ∫(1/(u^2) dx)
= tan(x) + 1/u + C
= tan(x) + 1/cos(x) + C
= tan(x) + sec(x) + C
C is a constant
∫ (1 + sin(x)) / (1 - sin^2(x)) dx
= ∫ (1 + sin(x)) / (cos^2(x)) dx
= ∫ sec^2(x) + sin(x)/cos^2(x) dx
∫(sec^2(x) + sin(x)/cos^2(x) dx)
= ∫(sec^2(x) dx) + ∫(sin(x)/cos^2(x) dx)
let u = cos(x) so du = -sin(x)
= ∫(sec^2(x) dx) - ∫(1/(u^2) dx)
= tan(x) + 1/u + C
= tan(x) + 1/cos(x) + C
= tan(x) + sec(x) + C
C is a constant
-
... ∫ [ 1 / ( 1 - sin x ) ] dx
= ∫ { 1 / [ 1 - cos ( π/2 - x ) ] } dx
= ∫ { 1 / [ 2. sin² ( π/4 - x/2) ] } dx
= ( 1/2 )· ∫ csc² ( π/4 - x/2 ) dx
= ( 1/2 )· [ - cot ( π/4 - x/2 ) ]· [ 1/ (-1/2) ] + C
= cot [ (π/4) - (x/2) ] + C ........................................… Ans.
_______________________________
Happy To Help !
_______________________________
= ∫ { 1 / [ 1 - cos ( π/2 - x ) ] } dx
= ∫ { 1 / [ 2. sin² ( π/4 - x/2) ] } dx
= ( 1/2 )· ∫ csc² ( π/4 - x/2 ) dx
= ( 1/2 )· [ - cot ( π/4 - x/2 ) ]· [ 1/ (-1/2) ] + C
= cot [ (π/4) - (x/2) ] + C ........................................… Ans.
_______________________________
Happy To Help !
_______________________________
-
1/(1-sinx) = (1+sinx)/[(1-sinx)(1+sinx)]
= (1+sinx)/[1-sin^2(x)]
= (1+sinx)/cos^2(x)
= 1/cos^2(x) + sinx/cos^2(x)
= sec^2(x) + (sinx/cosx)(1/cosx)
= sec^2(x) + tanxsecx
so
int [1/(1-sinx)]dx = int [sec^2(x) + tanxsecx ] dx
= tanx + secx + C
= (1+sinx)/[1-sin^2(x)]
= (1+sinx)/cos^2(x)
= 1/cos^2(x) + sinx/cos^2(x)
= sec^2(x) + (sinx/cosx)(1/cosx)
= sec^2(x) + tanxsecx
so
int [1/(1-sinx)]dx = int [sec^2(x) + tanxsecx ] dx
= tanx + secx + C
-
http://answers.yahoo.com/question/index?qid=20071010204213AA65hcL