answer in trigonometric form?
20(cos*(pi/3) + isin*(pi/3)
------------------------------------
4(cos*pi + isin*pi)
20(cos*(pi/3) + isin*(pi/3)
------------------------------------
4(cos*pi + isin*pi)
-
The argument (angle) of the quotient of two complex numbers is equal to the difference between the arguments of the numbers.
Therefore:
20(cos*(pi/3) + isin*(pi/3)
------------------------------------ =
4(cos*pi + isin*pi)
5[cos(pi/3-pi)+isin(pi/3-pi)]=
5[cos(-2pi/3)+isin(-2pi/3)]
Though this answer is in the requested form, for some reason there is a tendency to write the answer with a positive angle ("argument")
This can always be done by adding 2pi so the answer can also be written in the form:
5[cos(10pi/3)+isin(10pi/3)]
Therefore:
20(cos*(pi/3) + isin*(pi/3)
------------------------------------ =
4(cos*pi + isin*pi)
5[cos(pi/3-pi)+isin(pi/3-pi)]=
5[cos(-2pi/3)+isin(-2pi/3)]
Though this answer is in the requested form, for some reason there is a tendency to write the answer with a positive angle ("argument")
This can always be done by adding 2pi so the answer can also be written in the form:
5[cos(10pi/3)+isin(10pi/3)]