1. ʃxsin(x²)dx
2. ʃsin(π)t dt
3. (cos√t) /√t dt
4. ʃ (a+bx²)/√(3ax+bx³)dx
u = 3ax+bx³
2. ʃsin(π)t dt
3. (cos√t) /√t dt
4. ʃ (a+bx²)/√(3ax+bx³)dx
u = 3ax+bx³
-
Hello,
∫ x sin(x²) dx =
rewrite it as:
∫ sin(x²) x dx =
let:
x² = u
differentiate both sides:
d(x²) = du
2x dx = du
x dx = (1/2) du
then, substituting:
∫ sin(x²) x dx = ∫ sin u (1/2) du =
(pulling the constant out)
(1/2) ∫ sin u du =
(1/2)(- cos u) + C =
- (1/2)cos u + C
substitute back for u, ending with:
∫ x sin(x²) dx = - (1/2)cos(x²) + C
=================================
I'm not sure whether you mean ∫ [sin(π)] t dt or rather ∫ sin(πt) dt; let's see both cases:
∫ [sin(π)] t dt =
being sin(π) a mere constant, pull it out:
sin(π) ∫ t dt =
sin(π) [1/(1+1)] t^(1+1) + C =
{[sin(π)]/2} t² + C
---------------------------------
∫ sin(πt) dt =
let:
πt = u
t = (1/π)u
dt = (1/π) du
then, substituting:
∫ sin(πt) dt = ∫ sin u (1/π) du =
(pulling the constant out)
(1/π) ∫ sin u du =
(1/π)(- cos u) + C =
- (1/π)cos u + C
being u = πt, the answer is:
∫ sin(πt) dt = - (1/π)cos(πt) + C
============================
∫ [cos(√t) /√t] dt =
rewrite it as:
∫ cos(√t) (1/√t) dt =
let:
√t = u
differentiate both sides:
d[t^(1/2)] = du
(1/2) t^[(1/2) -1] dt = du
(1/2)t^(-1/2) dt = du
(1/2)(1/√t) dt = du
(1/√t) dt = 2 du
then, substituting:
∫ cos(√t) (1/√t) dt = ∫ cos u 2 du =
2 ∫ cos u du =
2sin u + C
being u = √t, the answer is:
∫ [cos(√t) /√t] dt = 2sin(√t) + C
=============================
∫ [(a + bx²) /√(3ax + bx³)] dx =
rewrite the integral as:
∫ (3ax + bx³)^(-1/2) (a + bx²) dx =
as suggested, let:
3ax + bx³ = u
differentiate both sides:
d(3ax + bx³) = du
(3a + 3bx²) dx = du
(factoring out 3)
3 (a + bx²) dx = du
(a + bx²) dx = (1/3) du
then, substituting:
∫ (3ax + bx³)^(-1/2) (a + bx²) dx = ∫ u^(-1/2) (1/3) du =
(1/3) ∫ u^(-1/2) du =
(1/3) {1/[(-1/2)+1]} u^[(-1/2)+1] + C =
(1/3)[1/(1/2)]u^(1/2) + C =
(1/3)2√u + C =
(2/3)√u + C
substitute back 3ax + bx³ for u, ending with:
∫ [(a + bx²) /√(3ax + bx³)] dx = (2/3)√(3ax + bx³) + C
I hope this helps..
∫ x sin(x²) dx =
rewrite it as:
∫ sin(x²) x dx =
let:
x² = u
differentiate both sides:
d(x²) = du
2x dx = du
x dx = (1/2) du
then, substituting:
∫ sin(x²) x dx = ∫ sin u (1/2) du =
(pulling the constant out)
(1/2) ∫ sin u du =
(1/2)(- cos u) + C =
- (1/2)cos u + C
substitute back for u, ending with:
∫ x sin(x²) dx = - (1/2)cos(x²) + C
=================================
I'm not sure whether you mean ∫ [sin(π)] t dt or rather ∫ sin(πt) dt; let's see both cases:
∫ [sin(π)] t dt =
being sin(π) a mere constant, pull it out:
sin(π) ∫ t dt =
sin(π) [1/(1+1)] t^(1+1) + C =
{[sin(π)]/2} t² + C
---------------------------------
∫ sin(πt) dt =
let:
πt = u
t = (1/π)u
dt = (1/π) du
then, substituting:
∫ sin(πt) dt = ∫ sin u (1/π) du =
(pulling the constant out)
(1/π) ∫ sin u du =
(1/π)(- cos u) + C =
- (1/π)cos u + C
being u = πt, the answer is:
∫ sin(πt) dt = - (1/π)cos(πt) + C
============================
∫ [cos(√t) /√t] dt =
rewrite it as:
∫ cos(√t) (1/√t) dt =
let:
√t = u
differentiate both sides:
d[t^(1/2)] = du
(1/2) t^[(1/2) -1] dt = du
(1/2)t^(-1/2) dt = du
(1/2)(1/√t) dt = du
(1/√t) dt = 2 du
then, substituting:
∫ cos(√t) (1/√t) dt = ∫ cos u 2 du =
2 ∫ cos u du =
2sin u + C
being u = √t, the answer is:
∫ [cos(√t) /√t] dt = 2sin(√t) + C
=============================
∫ [(a + bx²) /√(3ax + bx³)] dx =
rewrite the integral as:
∫ (3ax + bx³)^(-1/2) (a + bx²) dx =
as suggested, let:
3ax + bx³ = u
differentiate both sides:
d(3ax + bx³) = du
(3a + 3bx²) dx = du
(factoring out 3)
3 (a + bx²) dx = du
(a + bx²) dx = (1/3) du
then, substituting:
∫ (3ax + bx³)^(-1/2) (a + bx²) dx = ∫ u^(-1/2) (1/3) du =
(1/3) ∫ u^(-1/2) du =
(1/3) {1/[(-1/2)+1]} u^[(-1/2)+1] + C =
(1/3)[1/(1/2)]u^(1/2) + C =
(1/3)2√u + C =
(2/3)√u + C
substitute back 3ax + bx³ for u, ending with:
∫ [(a + bx²) /√(3ax + bx³)] dx = (2/3)√(3ax + bx³) + C
I hope this helps..