cos^2x - 6sinx cosx + 3sin^2x + 2
(a) 4 + root10
(b) 4 - root10
(c) 0
(d) none
(a) 4 + root10
(b) 4 - root10
(c) 0
(d) none
-
cos^2(x) - 6sin(x)cos(x) + 3sin^2(x) + 2
= cos^2(x) + sin^2(x) + 2sin^2(x) + 2 - 6sin(x) cos x
= 2sin^2(x) + 3 - 3sin(2x)
= 2sin^2(x) - 1 + 4 - 3sin(2x)
= - cos(2x) - 3sin(2x) + 4
= 4 - [cos(2x) + 3sin(2x) ]
make into single trignometric function
= 4 - [a sin A cos(2x) + b cos A sin(2x) ]
where a sin A = 1 and a cos A = 3
a^2 sin^2(A) + a^2 cos^2(A) = 1 + 9 = 10
a^2 = 10
a = √10
=> 4 - √10[sin A cos(2x) + cos A sin(2x) ]
= 4 - √10[sin(A + 2x) ]
since minimum value of sin(A + 2x) = -1,
The minimum value of given function = 4 - √10(-1)
= 4 + √10
= cos^2(x) + sin^2(x) + 2sin^2(x) + 2 - 6sin(x) cos x
= 2sin^2(x) + 3 - 3sin(2x)
= 2sin^2(x) - 1 + 4 - 3sin(2x)
= - cos(2x) - 3sin(2x) + 4
= 4 - [cos(2x) + 3sin(2x) ]
make into single trignometric function
= 4 - [a sin A cos(2x) + b cos A sin(2x) ]
where a sin A = 1 and a cos A = 3
a^2 sin^2(A) + a^2 cos^2(A) = 1 + 9 = 10
a^2 = 10
a = √10
=> 4 - √10[sin A cos(2x) + cos A sin(2x) ]
= 4 - √10[sin(A + 2x) ]
since minimum value of sin(A + 2x) = -1,
The minimum value of given function = 4 - √10(-1)
= 4 + √10