the gradient given in 3/5
thanks in advance!
thanks in advance!
-
y=ln(e^x +e^-x)
differentiate ...
y' = [1/(e^x +e^-x)] [e^x - e^-x]
y' = [e^x - e^-x]/[e^x + e^-x]
gradient given in 3/5
3/5 = [e^x - e^-x]/[e^x + e^-x]
3[e^x + e^-x] = 5[e^x - e^-x]
3e^x + 3e^-x = 5e^x - 5e^-x
-2e^x = - 8e^-x
-2e^x = - 8/e^x
e^x = 4/e^x
(e^x)² = 4
e^x = ± 2
take positive sign ...
e^x = 2
x = ln(2)
take negative sign ...
e^x = -2
x = ln(-2) <---- not defined (i.e. log of negative number does not exist.
so for x=ln(2)
y=ln(e^ln(2) +e^-ln(2))
y=ln(e^ln(2) + 1/e^ln(2))
y=ln(2 + 1/2)
y=ln(5/2)
coordinates: (ln(2),ln(5/2))
differentiate ...
y' = [1/(e^x +e^-x)] [e^x - e^-x]
y' = [e^x - e^-x]/[e^x + e^-x]
gradient given in 3/5
3/5 = [e^x - e^-x]/[e^x + e^-x]
3[e^x + e^-x] = 5[e^x - e^-x]
3e^x + 3e^-x = 5e^x - 5e^-x
-2e^x = - 8e^-x
-2e^x = - 8/e^x
e^x = 4/e^x
(e^x)² = 4
e^x = ± 2
take positive sign ...
e^x = 2
x = ln(2)
take negative sign ...
e^x = -2
x = ln(-2) <---- not defined (i.e. log of negative number does not exist.
so for x=ln(2)
y=ln(e^ln(2) +e^-ln(2))
y=ln(e^ln(2) + 1/e^ln(2))
y=ln(2 + 1/2)
y=ln(5/2)
coordinates: (ln(2),ln(5/2))
-
Let the point be (x1, y1)
=> y1 = ln (e^x1 + e^-x1) ... (1)
dy/dx = (e^x - e^-x) / (e^x + e^-x)
=> 3/5 = (e^x1 - e^-x1) / (e^x1 + e^-x1)
=> 3e^x1 + 3e^-x1 = 5e^x1 - 5e^-x1
=> e^x1 = 4e^-x1
=> e^x1 = 2
=> x1 = ln2
Plubbing e^x1 = 2 in (1),
y1 = ln (2 + 1/2) = ln(5/2)
=> the required point is
[ln2, ln(5/2)]
=> y1 = ln (e^x1 + e^-x1) ... (1)
dy/dx = (e^x - e^-x) / (e^x + e^-x)
=> 3/5 = (e^x1 - e^-x1) / (e^x1 + e^-x1)
=> 3e^x1 + 3e^-x1 = 5e^x1 - 5e^-x1
=> e^x1 = 4e^-x1
=> e^x1 = 2
=> x1 = ln2
Plubbing e^x1 = 2 in (1),
y1 = ln (2 + 1/2) = ln(5/2)
=> the required point is
[ln2, ln(5/2)]