Suppose that f(x) = ax + b, where a and b are real numbers. Given that
f(f(f(x))) = 8x + 21, what is the value of a and b?
Steps please
f(f(f(x))) = 8x + 21, what is the value of a and b?
Steps please
-
a(a(ax + b) + b) + b = 8x + 21
a((a^2)x + ab) + b) + b = 8x + 21
(a^3)x + (a^2)b + ab + b = 8x + 21
a^3x = 8x
a = 2
(a^2)b + ab + b = 21
4b + 2b + b = 21
7b = 21
b = 3
a((a^2)x + ab) + b) + b = 8x + 21
(a^3)x + (a^2)b + ab + b = 8x + 21
a^3x = 8x
a = 2
(a^2)b + ab + b = 21
4b + 2b + b = 21
7b = 21
b = 3
-
Simply calculate
f(f(f(x)))=f(f(ax+b))
=f(a^2x+ab+b)=a^3x+a^2b+ab+b
Hence in this case, a^3=8 so a=2, so 4b+2b+b=7b=21 hence b=21/7=3.
f(f(f(x)))=f(f(ax+b))
=f(a^2x+ab+b)=a^3x+a^2b+ab+b
Hence in this case, a^3=8 so a=2, so 4b+2b+b=7b=21 hence b=21/7=3.