Use properties of logarithms to expand
ln[(∛(e⁶z))/√(x+5)]
I know the answer is 2 + 1/3 ln z- 1/2 ln (x + 5)
Can someone help?
ln[(∛(e⁶z))/√(x+5)]
I know the answer is 2 + 1/3 ln z- 1/2 ln (x + 5)
Can someone help?
-
simple one.u jus need to know basics thats all.. EQUATIONS USED
ln[(∛(e⁶z))/√(x+5)] = ln[∛(e⁶z)] - ln[√(x+5)] ----------------------------------------… { ln(a/b)= ln a - ln b }
= 1/3[ ln (e⁶z) ] - 1/2 [ ln (x+5) ] -------------------------------------- { ln(a^x)=xln(a) }
=1/3[ ln(e⁶) + ln(z) ] - 1/2 [ ln (x+5) ] ------------------------------- { ln(a*b)= ln(a) + ln(b) }
=1/3[6 ln(e) + ln(z) ] - 1/2 [ ln (x+5) ] ------------------------------ applying 2nd equation
=2 + 1/3 ln (z) - 1/2 [ ln (x+5) ] -------------------------------------- { ln(e)=1 }
which is the required solution...
ln[(∛(e⁶z))/√(x+5)] = ln[∛(e⁶z)] - ln[√(x+5)] ----------------------------------------… { ln(a/b)= ln a - ln b }
= 1/3[ ln (e⁶z) ] - 1/2 [ ln (x+5) ] -------------------------------------- { ln(a^x)=xln(a) }
=1/3[ ln(e⁶) + ln(z) ] - 1/2 [ ln (x+5) ] ------------------------------- { ln(a*b)= ln(a) + ln(b) }
=1/3[6 ln(e) + ln(z) ] - 1/2 [ ln (x+5) ] ------------------------------ applying 2nd equation
=2 + 1/3 ln (z) - 1/2 [ ln (x+5) ] -------------------------------------- { ln(e)=1 }
which is the required solution...