If f(x)= cot (2x), what are all values of x in which f(x)=f '' (x)?
Domain of the function is larger or equal to 0 and smaller or equal to 2pi
Domain of the function is larger or equal to 0 and smaller or equal to 2pi
-
f(x) = cot(2x)
f ' (x) = - 2csc^2(2x)
f '' (x) = -2[2csc(2x)(-csc(2x) cot(2x)*2) ]
= 8csc^2(2x)cot(2x)
=> cot(2x) = 8 csc^2(2x)cot(2x)
=> cot(2x) [1 - 8csc^2(2x) ] = 0
case 1: cot(2x) = 0
2x = π/2, 3π/2, 5π/2, 7π/2
x = π/4, 3π/4, 5π/4, 7π/4
case 2: 8csc^2(2x) = 1
csc^2(2x) = 1/8
csc(2x) = (1/4)√2
sin(2x) = 2√2
there is no solution sin x value lies between - 1 and 1
So x = π/4, 3π/4, 5π/4 and 7π/4
f ' (x) = - 2csc^2(2x)
f '' (x) = -2[2csc(2x)(-csc(2x) cot(2x)*2) ]
= 8csc^2(2x)cot(2x)
=> cot(2x) = 8 csc^2(2x)cot(2x)
=> cot(2x) [1 - 8csc^2(2x) ] = 0
case 1: cot(2x) = 0
2x = π/2, 3π/2, 5π/2, 7π/2
x = π/4, 3π/4, 5π/4, 7π/4
case 2: 8csc^2(2x) = 1
csc^2(2x) = 1/8
csc(2x) = (1/4)√2
sin(2x) = 2√2
there is no solution sin x value lies between - 1 and 1
So x = π/4, 3π/4, 5π/4 and 7π/4