If (a^x)^2/3=1[numerator]/a^2[denominator] then what is the value of x
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > If (a^x)^2/3=1[numerator]/a^2[denominator] then what is the value of x

If (a^x)^2/3=1[numerator]/a^2[denominator] then what is the value of x

[From: ] [author: ] [Date: 11-04-24] [Hit: ]
to raise a power to a power,[i.e.[ i.e.Comparing the two,......
options :
a.1
b.2
c.-3
d.-1

-
Hint 1: (a^m)^n = a^(mn)
Hint 2: 1/a^n = a^(-n)
Hint 3: if a^m = a^n and a≠±1 then m=n

(a^x)^2/3 = 1/a² : Hint 1 , Hint 2
a^(x * 2/3) = a-² : Hint 3 (only if a≠±1 )
(x * 2/3) = -2
x = -2 * 3/2
x = -3

-
Using the rule that, to raise a power to a power, multiply the exponents
[i.e. (a^m)^n = a^(mn)]:

(a^x)^(2/3)
= a^(2x/3)

Using the fact that a negative exponent indicates reciprocal
[ i.e. a^(-n) = 1/(a^n) ]
we have
1/(a^2) = a^(-2)

Comparing the two,
2x/3 = -2
Therefore
2x = -6
x = -3
1
keywords: numerator,of,what,then,If,value,is,denominator,the,If (a^x)^2/3=1[numerator]/a^2[denominator] then what is the value of x
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .