From two points 100 feet apart in a straight line to the base of tree, the angles of elevation to the top of the tree is 38 degrees and 53 degrees respectively. Find the height of the tree.
-
Let y be the height of the tree.
Let x be the distance from the tree to the point where angle of elevation is 53 degrees. Obviously, the point where angle of elevation is 53 degrees is closer to the tree.
Y/x=tan53
Y/100+x=tan38
Y/tan53=x
Y/tan38=100+x
(y/tan38)-100=y/tan53
-100=(-y/tan38)+(y/tan53)
-100=(y*-tan53+y*tan38)/(tan53*tan38)
-100(tan53)(tan38)=(y*-tan53+y*tan38)
-100(tan53)(tan38)=y(-tan53+tan38)
(-100(tan53)(tan38))/(-tan53+tan38)=y
Y=189.970864 feet
Let x be the distance from the tree to the point where angle of elevation is 53 degrees. Obviously, the point where angle of elevation is 53 degrees is closer to the tree.
Y/x=tan53
Y/100+x=tan38
Y/tan53=x
Y/tan38=100+x
(y/tan38)-100=y/tan53
-100=(-y/tan38)+(y/tan53)
-100=(y*-tan53+y*tan38)/(tan53*tan38)
-100(tan53)(tan38)=(y*-tan53+y*tan38)
-100(tan53)(tan38)=y(-tan53+tan38)
(-100(tan53)(tan38))/(-tan53+tan38)=y
Y=189.970864 feet