liquid with a specific gravity of 0.8, how many pounds of upward buoyancy force will be exerted on the displacer?
-
B = (d liq.)(V)(g/gc) -----> for British/English units
*where:
B = bouyant force
d liq. = density of liquid
V = volume of material submerged in liquid
g/gc = 1 lbf/lbm
V = Area(base) x height(depth)
diameter = 4 in. = 0.3333 ft.
height (depth) = 20 in. = 1.667 ft.
V = (3.1416)[(0.3333 ft.)^2 / 4] (1.667 ft.)
V = 0.1454 ft^3
d (liq.) = (62.4 lbm/ft^3)(0.8) = 49.92 lbm/ft^3
B = (49.92 lbm/ft^3)(0.1454 ft^3)(1 lbf/lbm)
B = 7.26 lbf ------> FINAL ANSWER
(Note: "lbf" = pound force)
*where:
B = bouyant force
d liq. = density of liquid
V = volume of material submerged in liquid
g/gc = 1 lbf/lbm
V = Area(base) x height(depth)
diameter = 4 in. = 0.3333 ft.
height (depth) = 20 in. = 1.667 ft.
V = (3.1416)[(0.3333 ft.)^2 / 4] (1.667 ft.)
V = 0.1454 ft^3
d (liq.) = (62.4 lbm/ft^3)(0.8) = 49.92 lbm/ft^3
B = (49.92 lbm/ft^3)(0.1454 ft^3)(1 lbf/lbm)
B = 7.26 lbf ------> FINAL ANSWER
(Note: "lbf" = pound force)