Prove: If gcd(a,b) = 1, and c divides (a+b), then gcd(a,c) = gcd(b,c) = 1.
Favorites|Homepage
Subscriptions | sitemap
HOME > > Prove: If gcd(a,b) = 1, and c divides (a+b), then gcd(a,c) = gcd(b,c) = 1.

Prove: If gcd(a,b) = 1, and c divides (a+b), then gcd(a,c) = gcd(b,c) = 1.

[From: ] [author: ] [Date: 13-01-23] [Hit: ]
d divides gcd(a,b) = 1.So d = 1.By a similar argument, gcd(b,c) = 1.......
Help Please!

-
Let d = gcd(a,c). Then d divides a and d divides c. Since c divides a + b, d divides a + b. Since d divides a and d divides a + b, d divides (a + b) - a = b. Since d divides both a and b, d divides gcd(a,b) = 1. So d = 1. By a similar argument, gcd(b,c) = 1.
1
keywords: divides,and,1.,If,Prove,then,gcd,Prove: If gcd(a,b) = 1, and c divides (a+b), then gcd(a,c) = gcd(b,c) = 1.
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .