I am taking limes of sin6x/sin2x and I can't see how the next step would be (3sin2x-4sin(2x)^3)/sin2x
Please provide the formula!
Please provide the formula!
-
I don't think if your question is correctly worded.
I think I should show that sin6x = 3sin2x- [4sin(2x)]^3
Recall that sin2x = 2sinxcosx, and sin(a+b) = sinacosb + sinbcosa, cos(2x) = 1-2(sinx)^2; cos^x = 1-sin^x
So, sin6x = sin(4x+2x) = sin4xcos2x + sin2xcos4x
=> (2sin2xcos2x)cos2x + sin2x[(cos2x)^2 - (sin2x)^2]
=> 2sin2x(cos2x)^2 + sin2x[1-2(sin2x)^2]
=> 2sin2x(1-(sin2x)^2) + 2sin2x - 2(sin2x)^3
=> 2sin2x - 2(sin2x)^3 + 2sin2x - 2(sin2x)^3
=> 3sin2x- [4sin(2x)]^3
But if you want to take the limits lim sin6x/sin2x = lim sin6x/6x * 6x *2x/(2xsin2x)
so lim sin6x/sin2x = lim sin6x/6x * 3 * 2x/sin2x = 3
Please gimme best answer
I think I should show that sin6x = 3sin2x- [4sin(2x)]^3
Recall that sin2x = 2sinxcosx, and sin(a+b) = sinacosb + sinbcosa, cos(2x) = 1-2(sinx)^2; cos^x = 1-sin^x
So, sin6x = sin(4x+2x) = sin4xcos2x + sin2xcos4x
=> (2sin2xcos2x)cos2x + sin2x[(cos2x)^2 - (sin2x)^2]
=> 2sin2x(cos2x)^2 + sin2x[1-2(sin2x)^2]
=> 2sin2x(1-(sin2x)^2) + 2sin2x - 2(sin2x)^3
=> 2sin2x - 2(sin2x)^3 + 2sin2x - 2(sin2x)^3
=> 3sin2x- [4sin(2x)]^3
But if you want to take the limits lim sin6x/sin2x = lim sin6x/6x * 6x *2x/(2xsin2x)
so lim sin6x/sin2x = lim sin6x/6x * 3 * 2x/sin2x = 3
Please gimme best answer