1) y^2(x^2-1)=4
2) x(y^2-4)=2
3) y={x^3-2x^2}/(x-2)
4) y^2=3x+6
5) y=Ix+1l - lx-1l
2) x(y^2-4)=2
3) y={x^3-2x^2}/(x-2)
4) y^2=3x+6
5) y=Ix+1l - lx-1l
-
1) y^2(x^2-1)=4 or y = sq rt[4/{(x+1)(x-1)}
domain: -infinity
Range: -4< or = y < or = 4
2) x(y^2-4)=2 or y sq rt[(2/x) +4] or
domain: - infinity < x < -1/2, 0< x
Range: 2< y < infinity
3) y={x^3-2x^2}/(x-2) = x^2
domain: - infinity < x < -1/2, 0< x
Range: 0< or = y < infinity
4) y^2=3x+6 or y = sq rt[3x+6]
domain: -2 < or = x
Range: 0< or = y < infinity
5) y=Ix+1l - lx-1l
domain: -infinity < x
for -infinity < x< or = -1
y = -(x+1) -[-(x-1)] = -2 ---------------------- A and for
-1
y = x+1 -[-(x-1)] = 2x +2 -------------------- B
and for 1
y = x+1-(x-1) = 2 -------------------------------- C
From eqns A B and C, we have
Range: -2< or = y < 4
domain: -infinity
2) x(y^2-4)=2 or y sq rt[(2/x) +4] or
domain: - infinity < x < -1/2, 0< x
3) y={x^3-2x^2}/(x-2) = x^2
domain: - infinity < x < -1/2, 0< x
4) y^2=3x+6 or y = sq rt[3x+6]
domain: -2 < or = x
5) y=Ix+1l - lx-1l
domain: -infinity < x
y = -(x+1) -[-(x-1)] = -2 ---------------------- A and for
-1
and for 1
From eqns A B and C, we have
Range: -2< or = y < 4