Find the equation of the tangent line. Please do it step by step.
1. y= -3x^5-8x^3+4x^2; x=1
2. y= -x^-3+x^-2; x=2
1. y= -3x^5-8x^3+4x^2; x=1
2. y= -x^-3+x^-2; x=2
-
1. first of all we need to find the value of y with the given value of x=1
y=-3*1^5 -8*1^3 +4*1^2 =-7
so the point is (1,-7)
for the slope use derivative of the function
y ' = -3*5x^4 -8*3x^2 +4*2x
y '(1)= -15 -24 +8 = -31
y -y1 = m(x-x1)
y+7 =-31(x-1)
y=-31x +24
2. find value of y by given value of x=2
y = -2^-3 +2^-2 = 1/8
so the point is (2,1/8)
for the slope use derivative of the function:
y ' = 3/x^4 -2/x^3
y '(2)= 3/16 -2/8 = -1/16
y-1/8 = -1/16(x-2)
y=(-1/16)x +1/4
y=-3*1^5 -8*1^3 +4*1^2 =-7
so the point is (1,-7)
for the slope use derivative of the function
y ' = -3*5x^4 -8*3x^2 +4*2x
y '(1)= -15 -24 +8 = -31
y -y1 = m(x-x1)
y+7 =-31(x-1)
y=-31x +24
2. find value of y by given value of x=2
y = -2^-3 +2^-2 = 1/8
so the point is (2,1/8)
for the slope use derivative of the function:
y ' = 3/x^4 -2/x^3
y '(2)= 3/16 -2/8 = -1/16
y-1/8 = -1/16(x-2)
y=(-1/16)x +1/4