Identify the center and radius length of the circle whose equation is: (x-4)^2 + (y+3)^2 = 25 ?
-
Center: 4, -3
radius= 5
radius= 5
-
(x-h)^2+(y-k)^2=r^2 (standard equation of a circle)
r= radius
center of circle (h,k)
r=sqrt(25)
r=5
h=4
k=-3 [(y--k)=(y+k)]
r= radius
center of circle (h,k)
r=sqrt(25)
r=5
h=4
k=-3 [(y--k)=(y+k)]
-
(x - 4)^2 + (y + 3)^2 = 25
Center: (4, -3)
Radius = √25 = 5
Center: (4, -3)
Radius = √25 = 5