Integrate Sinx * Cosx
Provide your answer in terms of Sine NOT Cosine.
Thanks!
Provide your answer in terms of Sine NOT Cosine.
Thanks!
-
∫sinx cosx dx = ∫sinx d(sinx) = ½ sin²x + C
OR
∫sinx cosx dx = ¼∫sin(2x) d(2x) = -¼ cos(2x) + C = -¼(1 - 2sin²x) + C = ½ sin²x + C'
OR
∫sinx cosx dx = ¼∫sin(2x) d(2x) = -¼ cos(2x) + C = -¼(1 - 2sin²x) + C = ½ sin²x + C'
-
Int: sinxcosx dx [remember: sin(2x) = 2sinxcosx. So, sinxcosx = .5sin(2x)]
Int: .5sin(2x) dx
Int: .25sin(u) du [let u = 2x]
.25(-cos(u)) + C
-.25cos(2x) + C
Int: .5sin(2x) dx
Int: .25sin(u) du [let u = 2x]
.25(-cos(u)) + C
-.25cos(2x) + C