integral of (x^3)/(x^2-2x+1) dx
-
First divide the numerator by the denominator to get x + 2 + (3x - 2)/(x^2 - 2x + 1)
Then factor the denominator to (x - 1)^2
(3x - 2)/(x - 1)^2 = A/(x - 1) + B/(x - 1)^2
Multiply by LCD of (x - 1)^2
3x - 2 = A(x - 1) + B
Equate the powers: 3 = A
-2 = -A + B --> -2 = -3 + B --> B = 1
The integrand will now be x + 2 + 3/(x - 1) + 1/(x - 1)^2
Then integrate
Then factor the denominator to (x - 1)^2
(3x - 2)/(x - 1)^2 = A/(x - 1) + B/(x - 1)^2
Multiply by LCD of (x - 1)^2
3x - 2 = A(x - 1) + B
Equate the powers: 3 = A
-2 = -A + B --> -2 = -3 + B --> B = 1
The integrand will now be x + 2 + 3/(x - 1) + 1/(x - 1)^2
Then integrate